4008-508-928

Raman Spectroscopy/Camera Technology: Melanoma detection with SWIR Raman spectroscopy

发表时间:2016-05-06 07:09

Low readout noise—enabled by advanced detector technology—has facilitated the development of a technique for applying shortwave-infrared spectroscopy to the examination of darkly pigmented tissue. The nondestructive, noncontact approach suppresses spectral disturbance to greatly facilitate the diagnosis of melanoma.

PETER J. CASPERS, PATRICK MERKEN, RAF VANDERSMISSEN, INES SANTOS, and GERWIN PUPPELS

"Raman spectroscopy is a very versatile technique to look at anything that you can shine light on," says Gerwin J. Puppels. Puppels is is founder of spectroscopy systems developer RiverD International B.V. (Rotterdam, The Netherlands) and one of six researchers at the Erasmus University Medical Center (Rotterdam, The Netherlands) who collaborated with RiverD International on an extensive project funded by the Netherlands Ministry of Economic Affairs to explore medical application of Raman spectroscopy.1 What makes the technique attractive for biomedicine is its power, sensitivity, and ability to deliver high-resolution quantitative analysis without destructive effect on—or even contact with—specimens.

Raman spectroscopy measures the inelastic scattering of light from the molecules of a specimen illuminated at low levels by monochromatic light from a laser or other source. The sample absorbs photons from the illuminating light source and re-emits them with a slightly shifted (up or down) frequency. The downshifted frequency, used in the application of the Raman effect, is called the Stokes frequency—its upwards-shifted counterpart is called "anti-Stokes." Stokes and anti-Stokes frequency parts represent a minuscule fraction of 0.001% of the total light reflected by the sample because of elastic scattering called Rayleigh scattering.

Separating the weak desired Stokes frequency part from the extremely energetic Rayleigh scattering requires an elaborate setup of apertures, filters, or multi-spectroscopic and tuning devices. To overcome these difficulties, various methods have been conceived and developed for sample illumination and detection. Among these methods are stimulated irradiation, coherent anti-Stokes or nonlinear stimulation, and surface-enhanced Raman spectroscopy (SERS) using signal emission from metallic surfaces. Thus, despite its inherent difficulties, researchers have successfully developed Raman spectroscopy for numerous applications.

The detector of choice for Raman spectroscopy has been a silicon-based CCD sensor. But the fact that usable responsivity range of a CCD tops out at 1 μm is a serious limitation for medical applications, especially for investigating and characterizing darkly pigmented tissue. In the visible spectrum, such specimens emit strong fluorescence, which severely impacts the obtained Raman spectra.

While researchers have made numerous attempts to mitigate analytical degradation by fluorescence—for example, with time-gated detection, photobleaching, confocal signal detection, SERS, and resonance Raman (RR) scattering—none have led to a suitable setup for in vivo Raman spectroscopy of pigmented tissues. Fourier-transform (FT) Raman spectroscopy, however, has demonstrated the ability to yield usable spectra of pigmented skin lesions.1 FT Raman proves that tissue fluorescence can be successfully sidetracked by deploying a longer laser excitation wavelength—for example, 1064 nm. For these reasons, the Erasmus researchers found FT Raman compelling, but they ultimately had to reject the technique. Because it is based on the multiplexing of single-channel analysis, FT Raman's signal integration times can exceed those of multichannel Raman spectroscopy by several orders of magnitude (it requires one to tens of minutes to investigate results in a single spectrum). "It provides nice scientific results, but is hardly usable in medical practice," Puppels says.

Raman in the SWIR

So, the team needed to take a different path. And there, they encountered another hurdle.

Thanks to the extremely weak intensity of the Raman signal, Raman spectroscopy's main limitation is noise floor—which is exaggerated when the detector adds readout noise. "If you observe a signal—say, 10,000 photons-the shot noise on the signal is 100 photons," explains Puppels. "This would give you a signal-to-noise ratio of 100. Unfortunately, the readout noise of the detector will typically add an additional several hundreds of electrons, and the Raman measurement is no longer shot noise-limited. That puts you in a very bad position—especially when encountering weak signals consisting of just 10,000 photons."

While CCD detectors typically add 2–3 electrons of noise, InGaAs cameras operable beyond 1 μm have traditionally delivered readout noise of up to several hundred electrons. The team needed a detector capable of reaching beyond 1 μm, but adding minimal noise.

They found their solution in a camera that had never been used for medical spectroscopy—a high-performance camera designed for extreme low-light-level imaging applications in the shortwave-infrared (SWIR) realm, and for such demanding applications as photoluminescence measurements in semiconductor manufacturing and failure analysis. Investigating the camera, the researchers found Raman spectroscopy listed among its applications. Puppels was intrigued. "This might be a very promising avenue opening up to collect the Raman spectrum in seconds instead of minutes and hours," he said.

The Xenics (Leuven, Belgium) Cougar-640 (see Fig. 1) incorporates an InGaAs focal plane array detector (XFPA-1.7-640-LN2) featuring 640 × 512 pixels (at a pixel pitch of 20 μm) and a 24-bit analog-to-digital converter (ADC). A source follower per detector (SFD) readout scheme enables ultra-low noise levels (to <20 e‐). Each pixel features a full-well capacity of about 480,000 electrons, and a conversion gain of 2.17 μV/e‐. Typical dark current is <20 e-/sec/pixel, at 77K sensor temperature and with a target emissivity of 5% and target temperature at 300K. Even lower dark current values are achievable with a liquid nitrogen (LN2)-cooled target (~77K).

The Xenics Cougar camera contains an InGaAs focal plane detector suited for image capture in the shortwave-infrared (SWIR)
FIGURE 1. The Xenics Cougar camera contains an InGaAs focal plane detector suited for image capture in the shortwave-infrared (SWIR).

To demonstrate the feasibility of wavelength-shifted Raman spectroscopy, the team devised and built a complete SWIR multichannel instrument that included the camera (see Fig. 2). For a light source, they used a single-mode continuous-wave diode laser radiating at 976 nm—which provided output power of 150 mW (Model R-type from Innovative Photonic Solutions [Monmouth Junction, NJ]).

The experimental setup used in the Erasmus University Medical Research Center Rotterdam research has demonstrated that Raman spectroscopy can be successfully used in medical practice, delivering high-quality, high-wavenumber (HWVN) Raman spectra with a low fluorescence background
FIGURE 2. The experimental setup used in the Erasmus University Medical Research Center Rotterdam research has demonstrated that Raman spectroscopy can be successfully used in medical practice, delivering high-quality, high-wavenumber (HWVN) Raman spectra with a low fluorescence background. (From I. P. Santos et al.1)

Adjusting for medical applications

A key point of interest was the fact that the camera's readout scheme-called Read While Integrate (RWI)—enables lowering read noise by an order of magnitude. RWI, sometimes called "up-the-ramp readout," probes the accumulating photoelectrons through nondestructive sampling without resetting the buffering capacitors. The approach enables operation of the camera in extremely low-light-level applications, and it virtually eliminates effective readout noise.

Because the camera had never been used for medical spectroscopy, the team determined to enhance some of its characteristics by developing software to augment that supplied by Xenics. They wrote algorithms to read and pre-process the raw data that is delivered in the camera's RWI readout scheme.

Also, the camera's response curve showed a definite progressive nonlinear behavior when the accumulated signal exceeded a certain threshold, which necessitated a cutoff threshold for a more linear behavior. So, they devised an algorithm to correct the response above the threshold—for this purpose, they fitted a first-order polynomial to the linear range during the first part of the integration period. Figure 3 shows some tissue samples obtained with the experimental SWIR Raman spectroscopy setup.

The RWI principle was devised for industrial applications such as inspecting semiconductor chips for leakage. Such measurement takes time while the signal builds up.

Photographs and Raman spectra obtained with the experimental setup of pigmented human tissue indicating melanoma (a, b) and benign melanocytic tissue (b, c). Laser wavelength:976 nm, exposure time:10 s
FIGURE 3. Photographs and Raman spectra obtained with the experimental setup of pigmented human tissue indicating melanoma (a, b) and benign melanocytic tissue (b, c). Laser wavelength: 976 nm, exposure time: 10 s. (From I. P. Santos et al.1)

The Erasmus team's software operates similarly, nondestructively capturing the signal many times before producing a final averaged result. The effective noise level can be very low. The team reports having reduced from ~20 to ~2 e-, effectively.

The team found the detector's readout noise (in e-, with CDS) to be 22.7 e- (with 5.9 e- standard deviation), and dark current (e-/s/pixel) at 69.4 e-/s/pixel (with 4.5 e-/s/pixel standard deviation). Note that dark current strongly depends on target temperature and target emissivity. This noise level substantially decreases with more sampling readouts during the integration time. The final results given in the table indicate that the effective readout noise was reduced to the value comparable to cooled slow-scan CCD detectors.

The researchers caution that there are technical challenges yet to overcome. Raman spectroscopy's low signal-to-noise ratio implies limits for performing in the SWIR range to circumvent fluorescence effects produced by pigmented tissue in the visible realm. Not the least of these is cost. But an array with fewer pixels may be sufficient for medical applications, and such adjustments will be the focus of future work. In any case, this work is expected to substantially further the diagnosis of melanoma.

REFERENCE

1. I. P. Santos et al., J. Raman Spectrosc., doi:10.1002/jrs.4714 (2015).

Peter J. Caspers, Ph.D., is a researcher at Erasmus University Medical Center, Rotterdam, The Netherlands; Patrick Merken is CTO at Xenics, Leuven, Belgium; Raf Vandersmissen is CEO of sInfraRed Pte Ltd. - a Xenics company, Midview City, Singapore; Ines Santos is a PhD student at Erasmus University Medical Center; and Gerwin Puppels is founder of RiverD International, Rotterdam, The Netherlands; e-mail: p.caspers@erasmusmc.nl; www.erasmusmc.nl.

The source link is:

http://www.bioopticsworld.com/articles/print/volume-9/issue-3/biooptics-features/raman-spectroscopy-camera-technology-melanoma-detection-with-swir-raman-spectroscopy.html

4008-508-928
QQ咨询
文章列表
紫外-可见-近红外分光光度计(UV-Vis-NIR),其扫描波段覆盖紫外光、可见光、近红外光区域,利用物质分子对紫外光、可见光、近红外光的吸收特性来进行定量、定性分析,在科研实验室以及工业领域是常见仪器之一。
前言:为什么物质有颜色?物质在光源 (如大阳光)提供的能量作用下,构成物质元素的原子中的电子,发生了以基态到激发态,又以激发态回到基态的跃迁,导致物质选择性地吸收或发射相应特定的光波,从而显示其特有的颜色。例如:大多数金属显银白色,是因为金属的能带上部存在大量的空轨道,并且相邻轨道之间的能量差值非常小。因此,任何波长的光子进入金属表面时,都能将金属内部的自由电子激发到能带上部的空轨道上,但电...
    锂离子电池是一种高性能、轻便且可重复充电的电池技术,因其高能量密度而备受青睐,广泛应用于便携式电子设备和电动汽车等移动能源领域。随着对能源存储需求的不断增加,锂离子电池的性能优化和安全性成为研究的热点。在锂离子电池研究中,显微拉曼光谱仪已经成为一种强大的工具,它可以提供关于电池内部结构、化学成分和动力学过程的详细信息。本文将介绍显微拉曼光谱仪在锂离子电池研究中的应用,探讨其在电极材...
在生活和工业生产中,无论是原料还是半成品、成品,都含有一定的水,比如酒糟、粮食、烟草等。一定的含水量对物质保持形态、性状等具有重要意义。例如在食品领域,食品中的含水率高低会影响到食品的腐败和发霉,同时食品中的含水率高低对食品的鲜度、硬软性、流动性、呈味性等多方面有着重要的关系。常规的含水率烘干法存在测量时间比较长,测量比较繁琐。利用水分在近红处有吸收的原理进行含水率的测量是一种快速而简单的方...
研究相近产地大米的快速准确无损鉴别的方法能为鉴别地理标识大米提供理论和技术支持。拉曼光谱通过物质内部分子对可见单色光的散射强度.....
自1928年Raman现拉曼效应以来,拉曼光谱就成为检测分析物质结构的重要手段。拉曼光谱技术是一种检测分子振动以表征样品潜在化学结构的光谱技术。拉曼光谱技术广泛应用于检测固体和液体材料的化学成分,它可利用物质的光谱“指纹”信息,区分各种物质...
石墨烯被誉为“黑金”,轻得像空气,却又硬得像钢铁......
拉曼光谱在石墨烯的层数表征方面具有独特的优势......
【实测】奥谱天成手持拉曼ATR6600和显微拉曼光谱仪ATR8300-532/633
拉曼光谱仪在制药的各个环节中都具有巨大的应用潜力,如:原料筛查;过程监控,包括反应、晶化、配药、干燥、混合等;晶型识别;有效成分和赋形剂的表征等... ...
超微量分光光度计本身就是一类很重要的分析仪器,无论是物理学、化学、生物学、医学、材料学、环境学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门都有很重要的应用。超微量分光光度计奥谱天成的全波长(190~1000 nm)超...
3#样品,无颜色区域,强度相对于有颜色即有膜... ...
4#样品,红色区域强度比淡黄色区域强度... ...
5#样品... ...
拉曼光谱技术是一种非接触,无损的快速检测技术,能方便地给出物质的结构、组分等指纹信息,并且能从分子层面上识别各类物质及晶型结构,非常适合用于制药过程及药品检测。
激光拉曼光谱是一种振动光谱技术,通过分子振动引发的拉曼效应,可以对钻探设备的油气特征进行很好地识别,以分辨故障...
寻求一门新的高科技 手段应用到森林资源监测、森林防火及林业执法中,已成为林业管理的一项迫在眉睫、亟待解决的重大课题
利用高光谱特性可以识别不同染病期的松木监测。并且与无人机进行结合,可以实现高效大面积森林的高效监测...
借助无人机高光谱手段,不仅可以对城市绿地进行提取,而且可以进一步分析植被的健康程度、病虫害以及含水量或易燃风险等等...
拉曼光谱具有准确、无损、非接触的快速检测技术被应用于各行各业中...
利用无人机在高空巡航和遥控地面端人工识别的的手段,可实现大面积水体的蓝藻遥感探测,为水质分析和水体环境保护提供技术支撑...
利用无人机在高空巡航和遥控地面端人工识别的的手段,可以克服传统的人工踏勘费时、费力......
文章列表
紫外-可见-近红外分光光度计(UV-Vis-NIR),其扫描波段覆盖紫外光、可见光、近红外光区域,利用物质分子对紫外光、可见光、近红外光的吸收特性来进行定量、定性分析,在科研实验室以及工业领域是常见仪器之一。
2023-12-13
前言:为什么物质有颜色?物质在光源 (如大阳光)提供的能量作用下,构成物质元素的原子中的电子,发生了以基态到激发态,又以激发态回到基态的跃迁,导致物质选择性地吸收或发射相应特定的光波,从而显示其特有的颜色。例如:大多数金属显银白色,是因为金属的能带上部存在大量的空轨道,并且相邻轨道之间的能量差值非常小。因此,任何波长的光子进入金属表面时,都能将金属内部的自由电子激发到能带上部的空轨道上,但电...
2023-11-01
    锂离子电池是一种高性能、轻便且可重复充电的电池技术,因其高能量密度而备受青睐,广泛应用于便携式电子设备和电动汽车等移动能源领域。随着对能源存储需求的不断增加,锂离子电池的性能优化和安全性成为研究的热点。在锂离子电池研究中,显微拉曼光谱仪已经成为一种强大的工具,它可以提供关于电池内部结构、化学成分和动力学过程的详细信息。本文将介绍显微拉曼光谱仪在锂离子电池研究中的应用,探讨其在电极材...
2023-11-01
在生活和工业生产中,无论是原料还是半成品、成品,都含有一定的水,比如酒糟、粮食、烟草等。一定的含水量对物质保持形态、性状等具有重要意义。例如在食品领域,食品中的含水率高低会影响到食品的腐败和发霉,同时食品中的含水率高低对食品的鲜度、硬软性、流动性、呈味性等多方面有着重要的关系。常规的含水率烘干法存在测量时间比较长,测量比较繁琐。利用水分在近红处有吸收的原理进行含水率的测量是一种快速而简单的方...
2023-10-31
研究相近产地大米的快速准确无损鉴别的方法能为鉴别地理标识大米提供理论和技术支持。拉曼光谱通过物质内部分子对可见单色光的散射强度.....
2021-12-15
自1928年Raman现拉曼效应以来,拉曼光谱就成为检测分析物质结构的重要手段。拉曼光谱技术是一种检测分子振动以表征样品潜在化学结构的光谱技术。拉曼光谱技术广泛应用于检测固体和液体材料的化学成分,它可利用物质的光谱“指纹”信息,区分各种物质...
2021-01-21
石墨烯被誉为“黑金”,轻得像空气,却又硬得像钢铁......
拉曼光谱在石墨烯的层数表征方面具有独特的优势......
【实测】奥谱天成手持拉曼ATR6600和显微拉曼光谱仪ATR8300-532/633
2021-01-05
拉曼光谱仪在制药的各个环节中都具有巨大的应用潜力,如:原料筛查;过程监控,包括反应、晶化、配药、干燥、混合等;晶型识别;有效成分和赋形剂的表征等... ...
2020-12-11
超微量分光光度计本身就是一类很重要的分析仪器,无论是物理学、化学、生物学、医学、材料学、环境学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门都有很重要的应用。超微量分光光度计奥谱天成的全波长(190~1000 nm)超...
2020-11-25
3#样品,无颜色区域,强度相对于有颜色即有膜... ...
4#样品,红色区域强度比淡黄色区域强度... ...
5#样品... ...
2020-11-17
拉曼光谱技术是一种非接触,无损的快速检测技术,能方便地给出物质的结构、组分等指纹信息,并且能从分子层面上识别各类物质及晶型结构,非常适合用于制药过程及药品检测。
2020-11-09
激光拉曼光谱是一种振动光谱技术,通过分子振动引发的拉曼效应,可以对钻探设备的油气特征进行很好地识别,以分辨故障...
2022-12-13
寻求一门新的高科技 手段应用到森林资源监测、森林防火及林业执法中,已成为林业管理的一项迫在眉睫、亟待解决的重大课题
2022-05-11
利用高光谱特性可以识别不同染病期的松木监测。并且与无人机进行结合,可以实现高效大面积森林的高效监测...
2022-05-11
借助无人机高光谱手段,不仅可以对城市绿地进行提取,而且可以进一步分析植被的健康程度、病虫害以及含水量或易燃风险等等...
2022-05-11
拉曼光谱具有准确、无损、非接触的快速检测技术被应用于各行各业中...
2022-05-11
本研究从地物光谱反射率着手,探索分析诊断作物缺水状况的可行性...
2022-05-11
利用无人机在高空巡航和遥控地面端人工识别的的手段,可实现大面积水体的蓝藻遥感探测,为水质分析和水体环境保护提供技术支撑...
2022-05-11
利用无人机在高空巡航和遥控地面端人工识别的的手段,可以克服传统的人工踏勘费时、费力......
2022-05-11
煤粉天然气双用燃烧器|封边机报价|可视化大屏ui设计|十大窗帘品牌加盟|陶瓷加工|天津公墓|光纤准直器|零食货柜|气动扭矩扳手|乙炔炭黑|慈溪律师|U型排水沟|氟离子测定仪|深圳标志设计|家庭下水道疏通|耶格尔|高速滚齿机||增深剂|60HZ变频电源|亚朵酒店加盟|高压陶瓷电容|双备份集成电源|不锈钢复合板厂家|弧形铝方通|牟平白麻|AVX代理|篷盖布涂层机|嘉兴专利申请|奉化漂流有哪些|工业卷材| 江阴心理咨询|高尔夫模拟器|可燃气体报警器|自动平衡|内衬不锈钢复合钢管|美国试管|美国试管|陕西移动厕所|AVX钽电容|农林保水剂||卸船机|净化公司|精装修工程地板|打桩木|橡塑保温|铝压铸|弱视治疗哪里好|吸音隔音涂料|宜昌租车|复合风管|双登胶体蓄电池|碱式氯化铝|俄罗斯GOST认证|缓蚀剂|PCBA清洗|聚氨酯墙面板|OPPC光缆厂家|小区儿童游乐设施|万能式断路器|